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Abstract

Spherically symmetric _nite amplitude wave propagation in a prestressed compressible hyperelastic spheri!
cal shell is considered[ The prestress results from quasi!static application of internal pressure and a numerical
solution for this elastostatic problem is obtained _rst[ Dynamic change of the internal pressure results in the
propagation of a spherically symmetric wave[ A Godunov type _nite di}erence scheme is proposed for the
solution of the wave propagation problem and numerical results\ which are valid until the _rst re~ection\
are presented for a particular isotropic strain energy function and for the special cases of sudden removal
and sudden increase of the internal pressure[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Problems of _nite amplitude spherically symmetric wave propagation in hyperelastic solids have
been considered by Bland "0858#\ Janele et al[ "0878# and others\ and the propagation of in_ni!
tesimal waves in a hyperelastic solid with an underlying _nite static deformation has been exten!
sively studied[ However\ the literature contains very little work on the propagation of _nite
amplitude waves in a hyperelastic solid with an underlying inhomogeneous _nite static deformation
and the purpose of this paper is to consider such a problem[ This problem is _nite amplitude
spherically symmetric wave propagation in a uniform thick walled spherical compressible hyp!
erelastic shell\ which has been subjected initially to _nite deformation by a quasi!static application
of internal pressure[ It is assumed that the wave propagation is due to a sudden change of the
initial static internal pressure\ including complete and partial removal[

Analytic solutions for the quasi!static in~ation of a compressible thick walled hyperelastic shell
have been obtained for special strain energy functions by Ogden "0873# and Chung et al[ "0875# ^
however\ the present authors have been unable to extend these analytic solutions to the wave
propagation problem[
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Numerical results are obtained for the Gaussian strain energy function\ which is realistic for a
limited range of deformation of a solid rubber\ and is given by

W �
m

1
"l1

r ¦l1
u¦l1

f−2J1:2#¦
K
1

"J−0#1\ J � lrlulf[ "0#

in terms of the principal stretches lr\ lu\ lf referred to spherical polar coordinates "r\ u\ f#[ In "0#
m and K are the shear and bulk moduli\ respectively\ for in_nitesimal deformation from the natural
reference con_guration[ For spherically symmetric deformation lu � lf[ The term solid rubber is
used to denote rubber which has no embedded cavities\ unlike foam rubber[

Strain energy function "0# is a compressible generalization of the neo!Hookean model "Ogden\
0871# ^ however\ the procedures described are valid for other isotropic compressible strain energy
functions[ Results are obtained for K:m � 099 which gives Poisson|s ratio n � 9[384\ for in_ni!
tesimal deformation from the natural reference state[ Beatty and Stalnaker "0875# have obtained
an experimental value of n � 9[382 for urethane[ Results given by Haddow and Jiang "0885#
provide justi_cation for the neglect of thermodynamic e}ects\ that is the use of a purely mechanical
theory\ for "0# with K:m � 099[

The static problem is solved numerically\ in order to provide the initial conditions for the
superimposed wave propagation problem\ which is then solved numerically\ using a modi_cation
of a _nite di}erence scheme due to van Leer "0868#[

The analytic solution of Chung et al[ "0875# for the static problem is for the Blatz and Ko strain
energy function\

W �
m

1
"l−1

r ¦l−1
u ¦l−1

f −1lrlulf−4#\ "1#

which was proposed as a model for foam rubber[ Poisson|s ration\ n\ for "1# is 9[14\ whereas for a
solid rubber n is greater than about 9[34 and in some cases very close to 9[4[ The problem of wave
propagation in a material such as foam rubber\ which has embedded cavities\ involves dispersion
due to the multiple scattering of the waves from the cavities "Beltzer et al[\ 0878#\ and the governing
equations\ given in this paper\ for wave propagation in a solid without cavities or inclusions are
not valid[ Consequently\ results for the wave propagation problem with strain energy function "1#
are not given ^ numerical results for the static problem with "1# were obtained and compared with
those from the analytic solution as a check on the numerical procedure[

1[ Static solution

A thick walled spherical shell with inner "outer# radius A "B#\ in the undeformed natural
reference con_guration is subjected to a quasi!static application of internal pressure and the
inner "outer# radius becomes a "b#[ At this stage it is convenient to introduce the following
nondimensionalization scheme for the static problem\

RÞ � R:A\ AÞ � 0\ BÞ� B:A\ r¹ � r:A\ m � K:m\

and terms with dimension of stress are nondimensionalized by dividing by m[ Henceforth non!
dimensional quantities are used and the overbars are omitted[
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The spherically symmetric static deformation is given by

r � r"R#\ "2#

where r and R denote the radial coordinates of a material particle in the current con_guration and
the undeformed reference con_guration\ respectively\ so that r"0# � a and r"B# � b[ Principal
components of the stretch are given by

lr � r?\ lu � lf � r:R\ "3#

where a prime denotes di}erentiation with respect to R[ A Lagrangian representation is used and
the principal components of the Biot stress tensor\ Ogden "0873#\ are given by

TR �
1W
1lr

\ Tu �
1W
1lu

\ Tf �
1W
1lf

\ Tf � Tu[ "4#

Use of the Biot stress results in a simpler derivation of "6# than use of the Cauchy stress[ The
Lagrangian form of the equilibrium equation is

dTR

dR
¦

1"TR−Tu#
R

� 9[ "5#

Substitution of "2#Ð"4# into "5# gives the nonlinear second order ordinary di}erential equation for
r\
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for strain energy function "0#[ For the Blatz and Ko strain energy function\
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and substitution into "6# gives
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2R1r2rý−1r2r?R¦1R3r?3 � 9\ "8#

which Chung et al[ "0875# reduced to a _rst order di}erential equation\ by a suitable substitution\
and then found an analytic solution[ Boundary conditions are

TR"0# � −pil
1
u "0#\ TR"B# � 9\ "09a\b#

or\ in terms of the Cauchy stresses\

sr"a# � −pi\ sr"b# � 9\

where pi is the internal pressure[ Equation "6# with "7#\ and eqn "8#\ were solved numerically\ using
a RungeÐKutta type method and the results for "8# were found to be in very close agreement with
those from the analytic solution[

In order to implement the RungeÐKutta type method\ a value of lu"B# and hence r"B# is assumed
and the corresponding value of lr"B# � r?"B# is obtained from boundary condition "09b#[ A
shooting procedure is then used to determine the value of lu"0#\ required to satisfy the boundary
condition "09a#[ Accurate polynomial approximations for r � r"R# and Tr � TR"R# were obtained
from the numerical solution for use in the numerical scheme for the wave propagation problem[

Results for the static problem were obtained for

B � 2\ TR"B# � 9\ lu"B# � 0[914\ m � 099\ "00#

and these results are shown graphically in Figs 0 and 1[ The nondimensional internal pressure
corresponding to "00# is

Fig[ 0[ Biot stress components vs R for the static solution with B � 2\ TR"B# � 9 lu"B# � 0[914\ K:m � 099[
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Fig[ 1[ Stretches lr and lu vs R for the static solution with B � 2\ TR"B# � 9\ lu"B# � 0[914\ K:m � 099[

pi � −lu"0#−1TR"0# � 9[801[ "01#

2[ Wave propagation problem

The quantities for the static solution appear in the formulation of the wave propagation problem
and in what follows these quantities are denoted by a superposed tilda[ In addition to the
nondimensionalization scheme for the static problem\ time and velocity are nondimensionalized
by multiplying by zm:r9:A and zr9:m\ respectively\ where r9 is the density in the reference
con_guration[

Initial conditions for the wave propagation problem are

r"R\ 9# � r½"R#\ v"R\ 9# � 9\ "02#

where r½"R# is obtained from the numerical solution for the initial static deformation and
v � 1r"R\ t#:1t is the radial velocity component[ The boundary conditions considered are

TR"0\ t# � −lu"0\ t#1"pi¦p9H"t##\ TR"B\ t# � 9\ "03#

where pi is given by "01#\ p9 is a constant and H"t# is the unit step function[ Sudden unloading
corresponds to p9 � −pi[ In terms of the Cauchy stress\ "03# is given by

sr"a\ t# � pi¦p9H"t#\ sr"b\ t# � 9[

Governing equations are
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which may be put in the form
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System "07# is strictly hyperbolic and the eigenvalues of A are 2c which are the wave velocities
and

c � 0
1TR

1lr 1
0:1

[ "19#

Jump relations across a shock are

VðvŁ � −ðTRŁ\ VðlrŁ � −ðvŁ\ ðluŁ � 9\ "10#

where V is the shock speed and ðfŁ � f−−f¦\ where f− and f¦ are the values of the enclosed
quantity behind and ahead of the shock\ respectively[ If a shock is initiated at t � 9 it propagates
into a prestressed region and the conditions ahead of the shock are given by the static solution
until the _rst re~ection at R � B[ It follows from "10# that

V � 0
ðTRŁ
ðlrŁ 1

0:1

[ "11#

In the next section the jump relations "10# are used to develop an approximate Riemann solver
based on a _nite di}erence procedure[

For the constitutive relation "0#\

11TR

1l1
r

³ 9 at R � 0\

consequently a shock is initiated at R � 0 if p9 × 9 in boundary condition "03# and if p9 ³ 9 an
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acceleration wave is initiated[ The numerical scheme used to obtain solutions for the wave propa!
gation problem has excellent shock capturing properties and the results for the unloading problem\
that is p9 ³ 9\ seem to indicate a shock with some smearing[ However\ for the unloading problem
there is a very rapid change of TR\ Tu\ lr and v at the wave front which moves\ until the _rst
re~ection\ with the wave speed c\ evaluated from the static solution just ahead of the wave front[
It follows from "19# that\ for strain energy function "0#\ c is given by

c � z1 60¦ml3
u¦

l1
u

2"lrl
1
u #3:27[ "12#

The term z1ml3
u is dominant in the right hand side of "12# when m � 099\ consequently\ for a

_xed value of lu\ the variation of c with lr is negligible[ This is the reason for the very rapid change
of TR\ lr and v at the wave front[ For the loading problem\ that is p9 × 9\ the jumps and propagation
velocity for the shocks indicated by the numerical solutions are in close agreement with "10# and
"11#[

3[ Numerical method for wave propagation problem

The numerical scheme for the wave propagation problem is a Godunov type _nite di}erence
scheme[ In order to implement this scheme the governing eqn "07# is expressed in the conservation
form

1g

1t
¦

1h

1R
¦b � 9\ "13#

where

g � "v\ lr\ lu#T\ h � "−TR\ −v\ 9#T\ b � "−1"TR−Tu#:R\ 9\ −v:R#T[ "14#

and the superposed T denotes transposition[ The interval 0 ¾ R ¾ B is discretized into m equal cells
of length DR and 0 � R0 ³ R1 ³ = = = ³ Rj ³ = = = ³ Rm¦0 � B[ For a typical time step t $ ðtn\ tn¦0Ł and
the jth cell R $ ðRj\ Rj¦0Ł\ the weak form of the governing equation "13# can be constructed as

g
tn¦0

tn g
Rj¦0

Rj
0
1g

1t
¦

1h

1R
¦b1R1 dR dt � 9\ "15#

using the _nite volume method[ Integrating "15# by parts gives

g¹n¦0
j¦0:1 � g¹n

j¦0:1−
Dt
DR

"h¼ j¦0−h¼ j#−Dtb½ j¦0:1\ "16#

where the superposed bar\ caret\ and tilde denote spatial\ time and volume averaged quantities\
respectively\ and the superscripts and subscripts denote time and space discretizations\ respectively[
Further approximations for the time averaged values give

g¹n¦0
j¦0:1 � g¹n

j¦0:1−
Dt
DR

ðh"g¼ j¦0#−h"g¼ j#Ł−Dtb $
0
1
"g¼ j¦0¦g¼ j#%\ "17#
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where g¼ j j $ "0\ 1\ [ [ [ \ m¦0#\ is obtained by solving a Riemann problem at each cell interface and
by considering the appropriate boundary conditions[

In the present study the numerical scheme was developed by modifying a second!order Godunov!
type scheme proposed by van Leer "0868#[ In the van Leer scheme\ state variables at time step tn

are represented by piecewise linear functions of the form

g"R\ tn# � g¹n
j¦0:1¦

Dgn
j¦0:1

DR
"R−Rj¦0:1#\ for R $ ðRj\ Rj¦0Ł\ "18#

where Dgn
j¦0:1 denotes the spatial averaged slopes which can be evaluated from the spatial averaged

values\ g¹n\ in adjacent cells using a monotonic condition[ The state variables at the cell boundaries
at a half time step can be calculated for the piecewise linear distribution using the Taylor series
expansion

"gn¦0:1
j #¦ � g¹n

j¦0:1¦
Dt
1 0

1g

1t1
n

j¦0:1

−DR
1 0

1g

1R1
n

j¦0:1

\ "29a#

and

"gn¦0:1
j¦0 #− � g¹n

j¦0:1¦
Dt
1 0

1g

1r1
n

j¦0:1

¦
DR
1 0

1g

1R1
n

j¦0:1

\ "29b#

where the superscript ¦"−# denotes the state variables at the right "left# side of a cell interface[
Substituting system "07# in "29#\ to eliminate the time derivative term\ gives

"gn¦0:1
j #¦ � g¹n

j¦0:1−
0
1 $I¦

Dt
DR

A"g¹n
j¦0:1#%Dgn

j¦0:1−
Dt
1

b"g¹n
j¦0:1#\ "20a#

and

"gn¦0:1
j¦0:1 #− � g¹n

j¦0:1¦
0
1 $I−

Dt
DR

A"g¹n
j¦0:1#%D"gn

j¦0:1−
Dt
1

b"g¹n
j¦0:1#\ "20b#

where A and b are given by "08# and I is the unit matrix[ A Riemann problem is then solved at
each interface to resolve the discontinuities between "gn¦0:1

j #¦ and "gn¦0:1
j #−\ and to obtain the

time averaged state\ g¼ j which is required in "17# to calculate the numerical ~uxes and source term[
It is well known that the overall accuracy of a Godunov!type _nite di}erence scheme is usually

controlled by the order of the spatial discretization and an approximate Riemann solver is su.cient[
In the present study an approximate Riemann solver was developed to calculate l¼ rj and v¼j by using
the following approximations for the jump relations "10#\

"cn¦0:1
j #¦"l¼rj−"ln¦0:1

rj #¦#¦"v¼ j−"v¼n¦0:1
j #¦# � 9 "21a#

"cn¦0:1
j #−"l¼rj−"ln¦0:1

rj #−#−"v¼ j−"vn¦0:1
j #−# � 9[ "21b#

In "21#\ which are identical to the approximate Riemann solver proposed by Roe "0870#\ V is
approximated by c[ The time averaged value of lu was approximated by
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l¼uj �
0
1
""ln¦0:1

uj #¦¦"ln¦0:1
uj #−#[ "22#

The following _nite di}erence approximations of the jump relations "10# and the boundary
condition "09#\

"cn¦0:1
0 #¦"v¼0−"vn¦0:1

0 #¦"TR"l¼r0\ lu#−TR""ln¦0:1
r0 #¦\"ln¦0:1

u0 #¦## � 9\ "23a#

"cn¦0:1
0 #¦"l¼r0−"ln¦0:1

r0 #¦#¦"v¼0−"vn¦0:1
0 #¦# � 9\ "23b#

TR"l¼r0\ lu0#−"l¼u0#1"pi¦p9# � 9\ "23c#

were used to obtain the time averaged state at the inner surface R � 0[ Equations "23# are a system
of simultaneous nonlinear algebraic equations in l¼ r0\ l¼u0\ and vl and were solved using Newton|s
method[ The boundary condition at R � B was considered in a similar manner[

4[ Numerical results

Numerical results were obtained for a sudden change of the internal pressure pi � 9[801 for the
static solution of "6# with "7# and the data given in "00#[ Results are presented for two cases\ "a#
sudden removal of the static internal pressure pi\ that is for pi � −p9\ and "b# sudden increase in
internal pressure with pi¦p9 � 1[4[

"a# Plots of TR\ Tu and v against R for nondimensional times from t � 9¦ to t � 9[04 are shown
in Figs 2Ð4\ respectively[ It is clear that\ at the wave front\ there is a very rapid change of the

Fig[ 2[ Biot stress component TR vs R at intervals 9[904 of nondimensional time\ for sudden removal of the internal
pressure\ pi � 9[801\ of the static solution[



J[B[ Haddow\ L[ Jian`:International Journal of Solids and Structures 25 "0888# 1682Ð17941791

Fig[ 3[ Biot stress component Tu vs R at intervals 9[904 of nondimensional time\ for sudden removal of the internal
pressure\ pi � 9[801\ of the static solution[

Fig[ 4[ Radial velocity v vs R at intervals 9[904 of nondimensional time\ for sudden removal of the internal pressure\
pi � 9[801\ of the static solution[
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Fig[ 5[ Biot stress component TR vs R at intervals 9[904 of nondimensional time for sudden increase of the internal
pressure from the static pressure\ pi � 9[801\ to pi¦p9 � 1[4[

Fig[ 6[ Biot stress component Tu vs R at intervals 9[904 of nondimensional time for sudden increase of the internal
pressure from the static pressure\ pi � 9[801\ to pi¦p9 � 1[4[
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Fig[ 7[ Radial velocity v vs R at intervals 9[904 of nondimensional time for sudden increase of the internal pressure from
the static pressure\ pi � 9[801\ to pi¦p9 � 1[4[

_eld variables which has the appearance of a shock[ If the wave speed c were a function of lu

only\ there would be a discontinuity of the _eld variables at the wave front but the values of c
would be the same behind and ahead of the discontinuity[ This is similar to what happens in
linear elastodynamics when the solid inhomogeneous and a step function change of stress
occurs at a boundary[ Since the dependence of c on lr is very small compared with its
dependence on lu\ there is a rapid change of the _eld variables at the wave front ^ but this is
not a shock[

"b# Plots of TR\ Tu and v against R for nondimensional times from t � 9¦ to t � 9[04 are shown
in Figs 5Ð7\ respectively[ The discontinuity indicated at the wave front in Figs 5\ 6 and 7 is a
genuine shock[
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