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Abstract

Spherically symmetric finite amplitude wave propagation in a prestressed compressible hyperelastic spheri-
cal shell is considered. The prestress results from quasi-static application of internal pressure and a numerical
solution for this elastostatic problem is obtained first. Dynamic change of the internal pressure results in the
propagation of a spherically symmetric wave. A Godunov type finite difference scheme is proposed for the
solution of the wave propagation problem and numerical results, which are valid until the first reflection,
are presented for a particular isotropic strain energy function and for the special cases of sudden removal
and sudden increase of the internal pressure. © 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Problems of finite amplitude spherically symmetric wave propagation in hyperelastic solids have
been considered by Bland (1969), Janele et al. (1989) and others, and the propagation of infini-
tesimal waves in a hyperelastic solid with an underlying finite static deformation has been exten-
sively studied. However, the literature contains very little work on the propagation of finite
amplitude waves in a hyperelastic solid with an underlying inhomogeneous finite static deformation
and the purpose of this paper is to consider such a problem. This problem is finite amplitude
spherically symmetric wave propagation in a uniform thick walled spherical compressible hyp-
erelastic shell, which has been subjected initially to finite deformation by a quasi-static application
of internal pressure. It is assumed that the wave propagation is due to a sudden change of the
initial static internal pressure, including complete and partial removal.

Analytic solutions for the quasi-static inflation of a compressible thick walled hyperelastic shell
have been obtained for special strain energy functions by Ogden (1984) and Chung et al. (1986) ;
however, the present authors have been unable to extend these analytic solutions to the wave
propagation problem.
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Numerical results are obtained for the Gaussian strain energy function, which is realistic for a
limited range of deformation of a solid rubber, and is given by

K
W= g R30I T = Al (1)

in terms of the principal stretches 4,, 4y, 4, referred to spherical polar coordinates (r, 0, ¢). In (1)
wand K are the shear and bulk moduli, respectively, for infinitesimal deformation from the natural
reference configuration. For spherically symmetric deformation 4, = 4,. The term solid rubber is
used to denote rubber which has no embedded cavities, unlike foam rubber.

Strain energy function (1) is a compressible generalization of the neo-Hookean model (Ogden,
1982) ; however, the procedures described are valid for other isotropic compressible strain energy
functions. Results are obtained for K/u = 100 which gives Poisson’s ratio v = 0.495, for infini-
tesimal deformation from the natural reference state. Beatty and Stalnaker (1986) have obtained
an experimental value of v = 0.493 for urethane. Results given by Haddow and Jiang (1996)
provide justification for the neglect of thermodynamic effects, that is the use of a purely mechanical
theory, for (1) with K/u = 100.

The static problem is solved numerically, in order to provide the initial conditions for the
superimposed wave propagation problem, which is then solved numerically, using a modification
of a finite difference scheme due to van Leer (1979).

The analytic solution of Chung et al. (1986) for the static problem is for the Blatz and Ko strain
energy function,

W= gu,—z 007+ g =2 ddy = 5), ©

which was proposed as a model for foam rubber. Poisson’s ration, v, for (2) is 0.25, whereas for a
solid rubber v is greater than about 0.45 and in some cases very close to 0.5. The problem of wave
propagation in a material such as foam rubber, which has embedded cavities, involves dispersion
due to the multiple scattering of the waves from the cavities (Beltzer et al., 1989), and the governing
equations, given in this paper, for wave propagation in a solid without cavities or inclusions are
not valid. Consequently, results for the wave propagation problem with strain energy function (2)
are not given ; numerical results for the static problem with (2) were obtained and compared with
those from the analytic solution as a check on the numerical procedure.

2. Static solution

A thick walled spherical shell with inner (outer) radius 4 (B), in the undeformed natural
reference configuration is subjected to a quasi-static application of internal pressure and the
inner (outer) radius becomes a (b). At this stage it is convenient to introduce the following
nondimensionalization scheme for the static problem,

R=R/A, A=1, B=B/A, F=rlA, m=K/u,

and terms with dimension of stress are nondimensionalized by dividing by u. Henceforth non-
dimensional quantities are used and the overbars are omitted.
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The spherically symmetric static deformation is given by
r=r(R), 3)

where r and R denote the radial coordinates of a material particle in the current configuration and
the undeformed reference configuration, respectively, so that r(1) = a and r(B) = b. Principal
components of the stretch are given by

l =1, g = Ay =T/R, @)

where a prime denotes differentiation with respect to R. A Lagrangian representation is used and
the principal components of the Biot stress tensor, Ogden (1984), are given by

LW _aw o

TR_&&," Ta—a)vea T¢_@a T¢:To- (5)

Use of the Biot stress results in a simpler derivation of (7) than use of the Cauchy stress. The
Lagrangian form of the equilibrium equation is

dTx  2Tx—T,)
aR* R TV ©

Substitution of (3)—(5) into (6) gives the nonlinear second order ordinary differential equation for
r’

CW, ,OW [r r| 2fW oW _, ;
oz T \R TR TR s, an M
where

ow o z+ r 4 " 43 .
o, "™ T\R)T\R) (T\R) "
ow ry o, 7 r r\'"?
- o 2 | ’ I 72/3
7)o ()R (R)
azW_l " 4 1(r 43 s

Py +m R +3 R T ,

(72W_ 213/ v 211/3 i .
oo, "MV\R)TTR(T3\R) T ®)

for strain energy function (1). For the Blatz and Ko strain energy function,

ow  [(r\ ., oW N\, ew . W r
= | — —r 5 = — |5 + e = 3r b y T o
61,‘ R 8}»9 R R a)\,’z 8)»,. a/bg R

and substitution into (7) gives
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3R =2rr R+2R*r* =0, )

which Chung et al. (1986) reduced to a first order differential equation, by a suitable substitution,
and then found an analytic solution. Boundary conditions are

Tr(1) = —pidy(1), Tr(B) =0, (10a,b)
or, in terms of the Cauchy stresses,
Gr(a) = —PDi Jr(b) = Oa

where p; is the internal pressure. Equation (7) with (8), and eqn (9), were solved numerically, using
a Runge—Kutta type method and the results for (9) were found to be in very close agreement with
those from the analytic solution.

In order to implement the Runge—Kutta type method, a value of 4,(B) and hence r(B) is assumed
and the corresponding value of A.(B) = r'(B) is obtained from boundary condition (10b). A
shooting procedure is then used to determine the value of 4,(1), required to satisfy the boundary
condition (10a). Accurate polynomial approximations for » = r(R) and T, = T(R) were obtained
from the numerical solution for use in the numerical scheme for the wave propagation problem.

Results for the static problem were obtained for

B=3, Twx(B)=0, i(B)=1025 m=100, (11)

and these results are shown graphically in Figs 1 and 2. The nondimensional internal pressure
corresponding to (11) is

Fig. 1. Biot stress components vs R for the static solution with B = 3, Tx(B) = 0 4,(B) = 1.025, K/u = 100.
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Fig. 2. Stretches 4, and 4, vs R for the static solution with B = 3, T(B) = 0, 4,(B) = 1.025, K/p = 100.

pi= — (D) 2Tx(1) = 0.912. (12)

3. Wave propagation problem

The quantities for the static solution appear in the formulation of the wave propagation problem
and in what follows these quantities are denoted by a superposed tilda. In addition to the
nondimensionalization scheme for the static problem, time and velocity are nondimensionalized
by multiplying by /u/po/A and /p,/u, respectively, where p, is the density in the reference
configuration.

Initial conditions for the wave propagation problem are

r(R,0) =7(R), V(R,0) =0, (13)

where 7(R) is obtained from the numerical solution for the initial static deformation and
v = 0r(R, t)/0t is the radial velocity component. The boundary conditions considered are

Tr(1,0) = —2o(1,0)* {pi+poH(1)}, Tr(B,1) =0, (14)

where p; is given by (12), p, is a constant and H(¢) is the unit step function. Sudden unloading
corresponds to p, = —p,. In terms of the Cauchy stress, (14) is given by

Gr(aa Z) = pi+p()H(Z)9 O-r(b: t) = O

Governing equations are
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0Ty 2(Tx—T,) Ov
= — 15
OR + R ot’ (13)
oA, 0v
r_ 27 1
or TR~ (16)
829 v
— =0 17
ot R 7 17
which may be put in the form
og . 0g
where
0T, T, L 2ATR—Ty)
v — — R
LA A B 0 19
g - jr bl - _1 0 0 s - ( )
Lo v
0 0 0 I z |
System (18) is strictly hyperbolic and the eigenvalues of A are + ¢ which are the wave velocities
and
0TR\'"?
¢ = ( ! z,) . 20)

Jump relations across a shock are
Vvl = —=[Txl, VI4l = —[v], [4] =0, 21

where V' is the shock speed and [¢p] = ¢_— ¢, where ¢_ and ¢, are the values of the enclosed
quantity behind and ahead of the shock, respectively. If a shock is initiated at = 0 it propagates
into a prestressed region and the conditions ahead of the shock are given by the static solution
until the first reflection at R = B. It follows from (21) that

[4]

In the next section the jump relations (21) are used to develop an approximate Riemann solver
based on a finite difference procedure.
For the constitutive relation (1),

02Ty
02

consequently a shock is initiated at R = 1 if p, > 0 in boundary condition (14) and if p, < 0 an

<0 atR=1,



J.B. Haddow, L. Jiang|International Journal of Solids and Structures 36 (1999) 2793-2805 2799

acceleration wave is initiated. The numerical scheme used to obtain solutions for the wave propa-
gation problem has excellent shock capturing properties and the results for the unloading problem,
that is p, < 0, seem to indicate a shock with some smearing. However, for the unloading problem
there is a very rapid change of Tk, Tj, 4, and v at the wave front which moves, until the first
reflection, with the wave speed ¢, evaluated from the static solution just ahead of the wave front.
It follows from (20) that, for strain energy function (1), ¢ is given by

12
c= ﬂ {1 +mig+ /Le}. (23)

3(2,25)*"

The term ﬁmm‘,‘ is dominant in the right hand side of (23) when m = 100, consequently, for a
fixed value of 4, the variation of ¢ with 4, is negligible. This is the reason for the very rapid change
of T, 4, and v at the wave front. For the loading problem, thatis p, > 0, the jumps and propagation
velocity for the shocks indicated by the numerical solutions are in close agreement with (21) and
(22).

4. Numerical method for wave propagation problem

The numerical scheme for the wave propagation problem is a Godunov type finite difference
scheme. In order to implement this scheme the governing eqn (18) is expressed in the conservation
form

dg Jh
where
g= {Ua/‘l’raiﬁ}T’ hz{_TRD _Uao}Ta bz{—Z(TR—Tg)/R,O, _U/R}T' (25)

and the superposed 7 denotes transposition. The interval 1 < R < Bis discretized into m equal cells
oflengthARand1 = R, < R, < - < R; < - < R, , = B.Foratypical timestep e[, /' '] and
the jth cell Re[R), R;, ], the weak form of the governing equation (24) can be constructed as

mtl PR dg ¢oh ,
J, L,. <at+aR+b>R dRdt =0, (26)

using the finite volume method. Integrating (26) by parts gives

=n+1 =n At N N I

givi2=8vr12— ﬁ(hﬁl _hj) _A[bj+ 125 (27)
where the superposed bar, caret, and tilde denote spatial, time and volume averaged quantities,

respectively, and the superscripts and subscripts denote time and space discretizations, respectively.
Further approximations for the time averaged values give

) _, At . L, .
Bl =8n— AR P& 1) —h(g)]— A [2(gj+1 +gj)} (28)
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where g, je {1,2,...,m+1}, is obtained by solving a Riemann problem at each cell interface and
by considering the appropriate boundary conditions.

In the present study the numerical scheme was developed by modifying a second-order Godunov-
type scheme proposed by van Leer (1979). In the van Leer scheme, state variables at time step "
are represented by piecewise linear functions of the form

n
Agiiip

AR

g(R, ") =8i,1pnt (R—R;, 1), forRe[R;, R ], (29)
where Agj, |, denotes the spatial averaged slopes which can be evaluated from the spatial averaged
values, 8", in adjacent cells using a monotonic condition. The state variables at the cell boundaries
at a half time step can be calculated for the piecewise linear distribution using the Taylor series
expansion

, At (og\' —AR [0gY'
n+1/2\+ — o =
(g) gripts < P [>‘M2 7 (a R)_,-H/z’ (30a)
and
, At (og\' AR [dgY'
n+1/2y— _ gn
(g giipt <ar>]+m+ 3 (a R>f+1/2’ (30b)

where the superscript 4+ (—) denotes the state variables at the right (left) side of a cell interface.
Substituting system (18) in (30), to eliminate the time derivative term, gives

1 At At
(g;"Jr |/2)+ =gl P [I‘F HA(gﬁ 1/2)] Agﬁ 12— jb(gﬁ 1/2), (31a)
and
125 — . 1 At —n — At —
(g_';:-rll,r’zz =gt B [I— EA(gH 1/2)] A(g 1o — ?b(g/+ 12)5 (31b)

where A and b are given by (19) and I is the unit matrix. A Riemann problem is then solved at
each interface to resolve the discontinuities between (g;*'?)" and (g/*'?) ", and to obtain the
time averaged state, g which is required in (28) to calculate the numerical fluxes and source term.

It is well known that the overall accuracy of a Godunov-type finite difference scheme is usually
controlled by the order of the spatial discretization and an approximate Riemann solver is sufficient.
In the present study an approximate Riemann solver was developed to calculate /ir_, and ¢; by using

the following approximations for the jump relations (21),

() (= D))+ (@ = (@17 ) = 0 (32a)
(") (= ) ) = (@, — @) 1?) ) = 0. (32b)

In (32), which are identical to the approximate Riemann solver proposed by Roe (1981), V' is
approximated by c. The time averaged value of 1, was approximated by
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dop = 5O ) Q) (33)

The following finite difference approximations of the jump relations (21) and the boundary
condition (10),

(2B — @) Tr(Ars o) — Tr(( ) (it 1))} =0, (34a)
() Ay — T+ (8, — @) ) =0, (34b)
TR(/Trls/l(ﬂl)_(/T(Jl)z(pi +po) =0, (34¢)

were used to obtain the time averaged state at the inner surface R = 1. Equations (34) are a system
of simultaneous nonlinear algebraic equations in A,,, 4y, and v, and were solved using Newton’s
method. The boundary condition at R = B was considered in a similar manner.

5. Numerical results

Numerical results were obtained for a sudden change of the internal pressure p; = 0.912 for the
static solution of (7) with (8) and the data given in (11). Results are presented for two cases, (a)
sudden removal of the static internal pressure p;, that is for p, = — p,, and (b) sudden increase in
internal pressure with p,+p, = 2.5.

(a) Plots of Ty, T, and v against R for nondimensional times from z = 0" to 1 = 0.15 are shown
in Figs 3-5, respectively. It is clear that, at the wave front, there is a very rapid change of the

|

)
°
o

N
\

Fig. 3. Biot stress component T, vs R at intervals 0.015 of nondimensional time, for sudden removal of the internal
pressure, p; = 0.912, of the static solution.
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1.5

Fig. 4. Biot stress component 7, vs R at intervals 0.015 of nondimensional time, for sudden removal of the internal
pressure, p; = 0.912, of the static solution.

0.00
-0.05 =
\Y i
-0.10
~-0.15

Fig. 5. Radial velocity v vs R at intervals 0.015 of nondimensional time, for sudden removal of the internal pressure,
p; = 0.912, of the static solution.
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Fig. 6. Biot stress component T, vs R at intervals 0.015 of nondimensional time for sudden increase of the internal

pressure from the static pressure, p; = 0.912, to p;+p, = 2.5.

Fig. 7. Biot stress component T}, vs R at intervals 0.015 of nondimensional time for sudden increase of the internal

pressure from the static pressure, p, = 0.912, to p,+p, = 2.5.
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0.3

Fig. 8. Radial velocity v vs R at intervals 0.015 of nondimensional time for sudden increase of the internal pressure from
the static pressure, p; = 0.912, to p;+p, = 2.5.

field variables which has the appearance of a shock. If the wave speed ¢ were a function of /4,
only, there would be a discontinuity of the field variables at the wave front but the values of ¢
would be the same behind and ahead of the discontinuity. This is similar to what happens in
linear elastodynamics when the solid inhomogeneous and a step function change of stress
occurs at a boundary. Since the dependence of ¢ on 4, is very small compared with its
dependence on 4,, there is a rapid change of the field variables at the wave front ; but this is
not a shock.

(b) Plots of Ty, T, and v against R for nondimensional times from 7 = 0* to r = 0.15 are shown
in Figs 6-8, respectively. The discontinuity indicated at the wave front in Figs 6, 7 and 8 is a
genuine shock.
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